Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic Structure of the Norwegian Parastagonospora nodorum Population.

Identifieur interne : 000158 ( Main/Exploration ); précédent : 000157; suivant : 000159

Genetic Structure of the Norwegian Parastagonospora nodorum Population.

Auteurs : Min Lin [Norvège] ; Andrea Ficke [Norvège] ; James Cockram [Royaume-Uni] ; Morten Lillemo [Norvège]

Source :

RBID : pubmed:32612592

Abstract

The necrotrophic fungal pathogen Parastagonospora nodorum causes Septoria nodorum blotch (SNB), which is one of the dominating leaf blotch diseases of wheat in Norway. A total of 165 P. nodorum isolates were collected from three wheat growing regions in Norway from 2015 to 2017. These isolates, as well as nine isolates from other countries, were analyzed for genetic variation using 20 simple sequence repeat (SSR) markers. Genetic analysis of the isolate collection indicated that the P. nodorum pathogen population infecting Norwegian spring and winter wheat underwent regular sexual reproduction and exhibited a high level of genetic diversity, with no genetic subdivisions between sampled locations, years or host cultivars. A high frequency of the presence of necrotrophic effector (NE) gene SnToxA was found in Norwegian P. nodorum isolates compared to other parts of Europe, and we hypothesize that the SnToxA gene is the major virulence factor among the three known P. nodorum NE genes (SnToxA, SnTox1, and SnTox3) in the Norwegian pathogen population. While the importance of SNB has declined in much of Europe, Norway has remained as a P. nodorum hotspot, likely due at least in part to local adaptation of the pathogen population to ToxA sensitive Norwegian spring wheat cultivars.

DOI: 10.3389/fmicb.2020.01280
PubMed: 32612592
PubMed Central: PMC7309014


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic Structure of the Norwegian
<i>Parastagonospora nodorum</i>
Population.</title>
<author>
<name sortKey="Lin, Min" sort="Lin, Min" uniqKey="Lin M" first="Min" last="Lin">Min Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ficke, Andrea" sort="Ficke, Andrea" uniqKey="Ficke A" first="Andrea" last="Ficke">Andrea Ficke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cockram, James" sort="Cockram, James" uniqKey="Cockram J" first="James" last="Cockram">James Cockram</name>
<affiliation wicri:level="1">
<nlm:affiliation>John Bingham Laboratory, NIAB, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>John Bingham Laboratory, NIAB, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillemo, Morten" sort="Lillemo, Morten" uniqKey="Lillemo M" first="Morten" last="Lillemo">Morten Lillemo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32612592</idno>
<idno type="pmid">32612592</idno>
<idno type="doi">10.3389/fmicb.2020.01280</idno>
<idno type="pmc">PMC7309014</idno>
<idno type="wicri:Area/Main/Corpus">000205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000205</idno>
<idno type="wicri:Area/Main/Curation">000205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000205</idno>
<idno type="wicri:Area/Main/Exploration">000205</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic Structure of the Norwegian
<i>Parastagonospora nodorum</i>
Population.</title>
<author>
<name sortKey="Lin, Min" sort="Lin, Min" uniqKey="Lin M" first="Min" last="Lin">Min Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ficke, Andrea" sort="Ficke, Andrea" uniqKey="Ficke A" first="Andrea" last="Ficke">Andrea Ficke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cockram, James" sort="Cockram, James" uniqKey="Cockram J" first="James" last="Cockram">James Cockram</name>
<affiliation wicri:level="1">
<nlm:affiliation>John Bingham Laboratory, NIAB, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>John Bingham Laboratory, NIAB, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillemo, Morten" sort="Lillemo, Morten" uniqKey="Lillemo M" first="Morten" last="Lillemo">Morten Lillemo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The necrotrophic fungal pathogen
<i>Parastagonospora nodorum</i>
causes Septoria nodorum blotch (SNB), which is one of the dominating leaf blotch diseases of wheat in Norway. A total of 165
<i>P. nodorum</i>
isolates were collected from three wheat growing regions in Norway from 2015 to 2017. These isolates, as well as nine isolates from other countries, were analyzed for genetic variation using 20 simple sequence repeat (SSR) markers. Genetic analysis of the isolate collection indicated that the
<i>P. nodorum</i>
pathogen population infecting Norwegian spring and winter wheat underwent regular sexual reproduction and exhibited a high level of genetic diversity, with no genetic subdivisions between sampled locations, years or host cultivars. A high frequency of the presence of necrotrophic effector (NE) gene
<i>SnToxA</i>
was found in Norwegian
<i>P. nodorum</i>
isolates compared to other parts of Europe, and we hypothesize that the
<i>SnToxA</i>
gene is the major virulence factor among the three known
<i>P. nodorum</i>
NE genes (
<i>SnToxA</i>
,
<i>SnTox1</i>
, and
<i>SnTox3</i>
) in the Norwegian pathogen population. While the importance of SNB has declined in much of Europe, Norway has remained as a
<i>P. nodorum</i>
hotspot, likely due at least in part to local adaptation of the pathogen population to ToxA sensitive Norwegian spring wheat cultivars.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32612592</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic Structure of the Norwegian
<i>Parastagonospora nodorum</i>
Population.</ArticleTitle>
<Pagination>
<MedlinePgn>1280</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.01280</ELocationID>
<Abstract>
<AbstractText>The necrotrophic fungal pathogen
<i>Parastagonospora nodorum</i>
causes Septoria nodorum blotch (SNB), which is one of the dominating leaf blotch diseases of wheat in Norway. A total of 165
<i>P. nodorum</i>
isolates were collected from three wheat growing regions in Norway from 2015 to 2017. These isolates, as well as nine isolates from other countries, were analyzed for genetic variation using 20 simple sequence repeat (SSR) markers. Genetic analysis of the isolate collection indicated that the
<i>P. nodorum</i>
pathogen population infecting Norwegian spring and winter wheat underwent regular sexual reproduction and exhibited a high level of genetic diversity, with no genetic subdivisions between sampled locations, years or host cultivars. A high frequency of the presence of necrotrophic effector (NE) gene
<i>SnToxA</i>
was found in Norwegian
<i>P. nodorum</i>
isolates compared to other parts of Europe, and we hypothesize that the
<i>SnToxA</i>
gene is the major virulence factor among the three known
<i>P. nodorum</i>
NE genes (
<i>SnToxA</i>
,
<i>SnTox1</i>
, and
<i>SnTox3</i>
) in the Norwegian pathogen population. While the importance of SNB has declined in much of Europe, Norway has remained as a
<i>P. nodorum</i>
hotspot, likely due at least in part to local adaptation of the pathogen population to ToxA sensitive Norwegian spring wheat cultivars.</AbstractText>
<CopyrightInformation>Copyright © 2020 Lin, Ficke, Cockram and Lillemo.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ficke</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cockram</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>John Bingham Laboratory, NIAB, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lillemo</LastName>
<ForeName>Morten</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Parastagonospora nodorum</Keyword>
<Keyword MajorTopicYN="N">Septoria nodorum blotch</Keyword>
<Keyword MajorTopicYN="N">genetic variation</Keyword>
<Keyword MajorTopicYN="N">leaf blotch diseases</Keyword>
<Keyword MajorTopicYN="N">population genetics</Keyword>
<Keyword MajorTopicYN="N">simple sequence repeat markers</Keyword>
<Keyword MajorTopicYN="N">wheat</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32612592</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.01280</ArticleId>
<ArticleId IdType="pmc">PMC7309014</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2000 Feb;18(2):233-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2014 Mar 04;2:e281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24688859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 May;180(1):420-434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30858234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2018 Dec;102(12):2446-2452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30252627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 04;9:881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30022985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:23-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2018 Apr;102(4):696-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30673402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Ecol Evol. 2018 Apr;9(4):1006-1016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29938015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:349-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jun 1;24(11):1403-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18397895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Feb;19(2):432-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28093843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2006 Oct;49(10):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17213908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1980 Oct;96(2):523-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17249067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Nov;105(11):1417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26167761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2020 Aug;141:103398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32371235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Sep;5(9):e1000581</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19806176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5438-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4519626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Mar;87(3):353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Oct;40(1):25-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12948511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Jul;13(7):2101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Mar;96(3):234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 Jun;79:3-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26092782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22241993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Aug;38(8):953-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24405032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2019 Oct 18;15(10):e1008223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31626626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 May;28(5):615-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25608181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Sep;15(10):2895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16911209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2020 Mar;133(3):785-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31996971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Jul;26(14):3594-3602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28544181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(4):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1567-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="Lin, Min" sort="Lin, Min" uniqKey="Lin M" first="Min" last="Lin">Min Lin</name>
</noRegion>
<name sortKey="Ficke, Andrea" sort="Ficke, Andrea" uniqKey="Ficke A" first="Andrea" last="Ficke">Andrea Ficke</name>
<name sortKey="Lillemo, Morten" sort="Lillemo, Morten" uniqKey="Lillemo M" first="Morten" last="Lillemo">Morten Lillemo</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Cockram, James" sort="Cockram, James" uniqKey="Cockram J" first="James" last="Cockram">James Cockram</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32612592
   |texte=   Genetic Structure of the Norwegian Parastagonospora nodorum Population.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32612592" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020